(U)
 TRINEKS

Professional broadcast equipment supplier

Product Index

1. Rigid Transmission Line Componenets (50 ohms)

Line size $15 / 8$ "3Line size $31 / 8$ " 8
Line size $41 / 2^{\prime \prime}$ 13
Line size $61 / 8^{\prime \prime}$ 18
2. Coaxial RF Power Transfer Switches
7/16" - motorized 23
7/16" - manual 24
7/8 " - motorized 25
7/8 " - manual 26
$15 / 8$ " - motorized 27
$15 / 8$ " - manual 28
3 1/8 " - motorized 29
3 1/8" - manual 30
4 1/2" - motorized 31
$41 / 2$ " - manual 32
$61 / 8 "$ - motorized 33
6 1/8" - manual 34
3. Coaxial Switches \mathbf{U} - Link Type
$31 / 8 "$ 35
$41 / 2^{\prime \prime}$ 36
$41 / 16 "$ 37
$61 / 8 "$ 38
4. Coaxial Switches connected in Matrix Systems
Coaxial Switches connected in Matrix Systems 39

Product Index

5. 19 " Rack Control Panels for Motorized RF Power Switches
19 " Rack Control Panel for Motorized RF Power Switch 40
6. Antennas (50 ohms)
UHF Panel Antenna with eight elements 42
FM Dipole antenna 44
FM Yagi antenna with three elements 45
FM Circular Antenna 46
FM Panel Antenna 47
VHF Panel Antenna 48
7. Power Spliters (50 ohms)
FM , VHF , UHF 49
8. Filers (50 ohms)
FM band pass Filter (1 kW) 52
FM band pass Filter (10 kW) 53
UHF band pass Filter (0.8 kW) 54
9. Adapters
Straight Adapters 55
10. Connectors
Connectors for Coaxial Cable 56
11. Engineering
Tube dimensions and cut - back dimensions 58
Terminal dimensions 59

RL 158.14

RL 158.35

RL 158.32

RL 158.19

Outer Conductor: high conductivity hard drawn copper tubing ($\varnothing 41.3 \mathrm{~mm}$. x $\varnothing 38.8 \mathrm{~mm}$.)
Inner Conductor: high conductivity hard drawn copper tubing ($\varnothing 16.9 \mathrm{~mm} . \mathrm{x} \varnothing 14.9 \mathrm{~mm}$.)
Insulation Material:

(®) -

* All dimensions shown are in milimeters.
* Drawings not to scale.

Mating Face Dimension - 1 5/8"
(EIA standard RS-225)

Line assembly, flanged with fixed and swivel flange. Brass and copper construction. Includes one anchor insulator conductor connector, silicone O-ring and stainless steel hardware set.

Line assembly, one end fixed flanged. Includes one anchor insulator conductor connector, silicone O-ring and stainless steel hardware set.

RL 158.02

Line assembly, unflanged, no insulator
 conductor connector or hardware.

RL 158.04

Line size 1 5/8"

Swivel EIA flange, brass. Includes only sliding and fixed ring prepared for silver brazing to outer conducting tubing.

Fixed EIA flange prepared for silver brazing to outer conducting tubing.

* All dimensions shown are in milimeters.
* Drawings not to scale.

Miter elbow 90°, swivel EIA flanges on both ends, brass and copper construction. Includes unsupported inner conductor, one anchor insulator conductor connector, silicone O-ring and stainless steel hardware set.

Miter elbow 90°, swivel EIA flanges on both ends, brass and copper construction. Includes supported inner conductor, anchor insulator conductor connector, silicone O-ring and stainless steel hardware set.

RL 158.14

Miter elbow 90°-unequal legs, swivel EIA flanges on both ends, brass and copper construction. Includes supported inner conductor, one anchor insulator conductor connector, silicone O-ring and stainless steel hardware set.

RL 158.16

Miter elbow 90°-unflanged, copper construction. Includes only one unsupported inner conductor.

* All dimensions shown are in milimeters.
* Drawings not to scale.

Tee assembly, swivel EIA flanges. Includes three anchor insulator connectors, O-rings
and hardware sets.
Line size 1 5/8"

Miter elbow 90°-unflanged, long legs, copper construction. Includes only one supported inner conductor.

Tee assembly, unflanged, copper construction. Includes only supported inner conductor.

RL 158.28

Unpressurized EIA field flange for indoor use. Includes one stainless steel hose clamp and hardware set.

RL 158.30

Line coupling for connection of unflanged lines. Includes supported inner conductor connector and two stainless steel hose clamps.

RL 158.32

Line coupling for connection of unflanged lines. No inner conductor connector. Includes two stainless steel hose clamps (does not increase outer conductor length).
© \because

* All dimensions shown are in milimeters.
* Drawings not to scale.

Anchor insulator conductor connector, for EIA flange connection, silver plated. Standard lenght.

RL 158.35

Line size 1 5/8"

Anchor insulator conductor connector, for EIA flange connection, silver plated. Short version.

RL 158.36

Stainless steel hardware set with silicone rubber O-ring.

RL 318.11

RL 318.35

RL 318.22

RL 318.01

Outer Conductor: high conductivity hard drawn copper tubing ($\varnothing 79.4 \mathrm{~mm}$. x $\varnothing 76.9 \mathrm{~mm}$.)
Inner Conductor: high conductivity hard drawn copper tubing ($\varnothing 33.4 \mathrm{~mm} . x \quad \varnothing 31.3 \mathrm{~mm}$.)
Insulation Material:

(®) -

* All dimensions shown are in milimeters.
* Drawings not to scale.

Line assembly, flanged with fixed and swivel flange. Brass and copper construction. Includes one anchor insulator conductor connector, silicone O-ring and stainless steel hardware set.

RL 318.01

Line assembly, one end fixed flanged. Includes one anchor insulator conductor connector, silicone O-ring and stainless steel hardware set.

RL 318.02

Line assembly, unflanged, no insulator conductor connector or hardware.

RL 318.04

Swivel EIA flange, brass. Includes only sliding and fixed ring prepared for silver brazing to outer conducting tubing.

Fixed EIA flange with silver solder ring insert for silver brazing to outer conducting tubing.

* All dimensions shown are in milimeters.
* Drawings not to scale.

Miter elbow 90, swivel EIA flanges on both ends, reinforced outside, brass and copper construction. Includes unsupported inner conductor, one anchor insulator conductor connector, silicone O-ring and stainless steel hardware set.

RL 318.11

Miter elbow 90°, swivel EIA flanges on both ends, reinforced outside, brass and copper construction. Includes supported inner conductor, anchor insulator conductor connector, silicone O-ring and stainless steel hardware set.

RL 318.14

Miter elbow 90°-unequal legs, swivel EIA flanges on both ends, reinforced outside, brass and copper construction. Includes supported inner conductor, one anchor insulator conductor connector, silicone O-ring and stainless steel hardware set.

RL 318.16

Tee assembly, swivel EIA flanges. Includes three anchor insulator connectors, O-rings and hardware sets.

RL 318.19

Miter elbow 90°-unflanged, reinforced outside, copper construction. Includes only one unsupported inner conductor.

* All dimensions shown are in milimeters.
* Drawings not to scale.

Miter elbow 90°-unflanged, long legs, reinforced outside, copper constuction. Includes only one supported inner conductor.

Unpressurized EIA field flange for indoor use. Includes one stainless steel hose clamp and hardware set.

Line coupling for connection of unflanged lines. Includes supported inner conductor connector and two stainless steel hose clamps.

RL 318.32

Line coupling for connection of unflanged lines. No inner conductor connector. Includes two stainless steel hose clamps (does not increase outer conductor length).
© $®$

[^0]

Anchor insulator conductor connector, for EIA flange connection, silver plated. Standard lenght.

Anchor insulator conductor connector, for EIA flange connection, silver plated. Short version.

Unsupported inner conductor connector.

Stainless steel hardware set with silicone rubber O-ring.

Gas barrier with silicone O-ring and stainless steel hardware set.

* All dimensions shown are in milimeters.
* Drawings not to scale.

RL 412.11

RL 412.01

RL 412.35

RL 412.50

Outer Conductor: high conductivity hard drawn copper tubing
($\varnothing 106 \mathrm{~mm} . \mathrm{x} \varnothing 103 \mathrm{~mm}$.)
Inner Conductor: high conductivity hard drawn copper tubing
($\varnothing 44.7 \mathrm{~mm} . x \quad \varnothing 42.8 \mathrm{~mm}$.)
Insulation Material: virgin PTFE

(®) \triangle

* All dimensions shown are in milimeters.
* Drawings not to scale.

Mating Face Dimension - 4 1/2"

Line assembly, flanged with fixed and swivel flange. Brass and copper construction. Includes one anchor insulator conductor connector, silicone O-ring and stainless steel hardware set.

RL 412.01

Line assembly, one end fixed flanged. Includes one anchor insulator conductor connector, silicone O-ring and stainless steel hardware set.

RL 412.02

Line assembly, unflanged, no insulator conductor connector or hardware.

Swivel EIA flange, brass. Includes only sliding and fixed ring prepared for silver brazing to outer conducting tubing.

RL 412.06

Fixed EIA flange with silver solder ring insert for silver brazing to outer conducting tubing.

* All dimensions shown are in milimeters.
* Drawings not to scale.

Miter elbow 90°, swivel EIA flanges on both ends, reinforced outside, brass and copper construction. Includes unsupported inner conductor, one anchor insulator conductor connector, silicone O-ring and stainless steel hardware set.

RL 412.11

Miter elbow 90°, swivel EIA flanges on both ends, reinforced outside, brass and copper construction. Includes supported inner conductor, anchor insulator conductor connector, silicone O-ring and stainless steel hardware set.

RL 412.14

Tee assembly, swivel EIA flanges. Includes three anchor insulator connectors, O-rings and hardware sets.

RL 412.19

Miter elbow 90°-unflanged, reinforced outside, copper construction. Includes only one unsupported inner conductor.

Miter elbow 90°-unflanged, long legs, reinforced outside, copper construction. Includes only one supported inner conductor.

* All dimensions shown are in milimeters.
* Drawings not to scale.

Unpressurized EIA field flange for indoor use. Includes one stainless steel hose clamp and hardware set.

Line coupling for connection of unflanged lines. No inner conductor connector. Includes two stainless steel hose clamps (does not increase outer conductor length).

RL 412.33
Line coupling for connection of unflanged lines. Includes supported inner conductor connector and two stainless steel hose clamps.

RL 412.32

Anchor insulator conductor connector, for EIA flange connection, silver plated. Standard lenght.

Anchor insulator conductor connector, for EIA flange connection, silver plated. Short version.

* All dimensions shown are in milimeters.
* Drawings not to scale.

Unsupported inner conductor connector.

RL 412.40

Stainless steel hardware set with silicone rubber O-ring.

8 pieces per set

Gas barrier with silicone O-ring and stainless steel hardware set.

[^1]

RL 618.11
RL 618.01

RL 618.50
Outer Conductor: high conductivity hard drawn copper tubing ($\varnothing 155,6 \mathrm{~mm} . \mathrm{x} \varnothing 151,9 \mathrm{~mm}$.)
Inner Conductor: high conductivity hard drawn copper tubing ($\varnothing 66 \mathrm{~mm} . \times \varnothing 64 \mathrm{~mm}$.)
Insulation Material: virgin PTFE

Mating Face Dimension - $61 / 8^{\prime \prime}$

* All dimensions shown are in milimeters.
* Drawings not to scale.

Rigid Transmission Line Components

Line assembly, flanged with fixed and swivel flange. Brass and copper construction. Includes one anchor insulator conductor connector, silicone O-ring and stainless steel hardware set.

RL 618.01

Line assembly, one end fixed flanged. Includes one anchor insulator conductor connector, silicone O-ring and stainless steel hardware set.

RL 618.02

Line assembly, unflanged, no insulator conductor connector or hardware.

Swivel EIA flange, brass. Includes only sliding and fixed ring prepared for silver brazing to outer conducting tubing.

RL 618.06

Fixed EIA flange with silver solder ring insert for silver brazing to outer conducting tubing.

* All dimensions shown are in milimeters.
* Drawings not to scale.

Miter elbow 90°, swivel EIA flanges on both ends, reinforced outside, brass and copper construction. Includes unsupported inner conductor, one anchor insulator conductor connector, silicone O-ring and stainless steel hardware set.

RL 618.11

Miter elbow 90°, swivel EIA flanges on both ends, reinforced outside, brass and copper construction. Includes supported inner conductor, anchor insulator conductor connector, silicone O-ring and stainless steel hardware set.

RL 618.14

Unpressurized EIA field flange for indoor use. Includes one stainless steel hose clamp and hardware set.

* All dimensions shown are in milimeters.
* Drawings not to scale.

Line coupling for connection of unflanged lines. Includes supported inner conductor connector and two stainless steel hose clamps.

RL 618.32

Line coupling for connection of unflanged lines. No inner conductor connector. Includes two stainless steel hose clamps (does not increase outer conductor length).

RL 618.33

Unsupported inner conductor connector.

* All dimensions shown are in milimeters.
* Drawings not to scale.

Stainless steel hardware set with silicone rubber O-ring.

RL 618.45

Gas barrier with silicone O-ring and stainless steel hardware set.

model	power source
SW 716.01	24 VDC
SW 716.02	$110 \mathrm{VAC}^{*}$
SW 716.03	$230 \mathrm{VAC}^{*}$

* electro motors are 24 VDC (transformers included)

The models SW 716.01, SW 716.02 and SW 716.03 are motor-driven, two-way coaxial transfer switches designed to change coaxial connections with a minimum off-airtime.Mainly they are used for switching transmitters, antennas, dummy loads and other peripheral equipment in situations when broadcasting procedures are modified, when there is need for emergency repair, or during scheduled maintenance.
The coaxial switch provides two isolated RF paths for each switch connections. For prevention of any damage a couple of auxiliary microswitches are built in, that help the RF power throughout the switch to be removed just before the RF spring contacts start to open and also to be established again just after the RF contacts reach their final position.
The aluminium cavity has four ports terminated with standard 7/16" DIN female interfaces. The assembly is not gas-tight. The switch is equipped with a mechanical position indicator and emergency knob for manual operating.

Specifications

Impedance
Frequency range
50 ohms
from 0.3 up to 1000 MHz
Terminals
four $7 / 16$ " DIN female interfaces
VSWR less than 1.05
Maximum power rating:

MHz	2	30	100	200	500	1000
kW	9	6	4	3	2,2	1,4

Isolation
more than 60 dB
Switching time
1 second
Test voltage AC 50 Hz 3 kV peak
Overal dimensions $120 \times 120 \times 180$

* All dimensions shown are in milimeters.
* Drawings not to scale.

model	power source
SW 716.04	manual

The model SW 716.04 is two-way coaxial transfer switch designed for easy and reliable manual switching of transmitters, antennas, dummy loads and other peripheral equipment in situations when broadcasting procedures are modified, when there is need for emergency repair, or during scheduled maintenance.
The coaxial switch provides two isolated RF paths for each switch connections. For prevention of any damage a couple of auxiliary microswitches are built in, that help the RF power throughout the switch to be removed just before the RF spring contacts start to open and also to be established again just after the RF contacts reach their final position.
The aluminium cavity has four ports terminated with standard 7/16" DIN female interfaces. The assembly is not gas-tight.
Besides handwheel for manual operating, the switch is equiped with a mechanical position indicator.

Specifications

Impedance			50 ohms			
Frequency range			from 0.3 up to 1000 MHz			
Terminals			four 7/16" DIN female interfaces			
VSWR			less than 1.05			
Maximum power rating:						
MHz	2	30	100	200	500	1000
kW	9	6	4	3	2,2	1,4
Isolation			more than 60 dB			
Test voltage AC 50Hz			3 kV peak			
Overal dimensions			$120 \times 120 \times 105$			

[^2]

* All dimensions shown are in milimeters.
* Drawings not to scale.

model	power source
SW 78.01	24 VDC
SW 78.02	$110 \mathrm{VAC} *$
SW 78.03	$230 \mathrm{VAC}^{*}$

* electro motors are 24 VDC (transformers included)

The models SW78.01, SW 78.02 and SW 78.03 are motor-driven, two-way coaxial transfer switches designed to change coaxial connections with a minimum off-airtime. Mainly they are used for switching transmitters, antennas, dummy loads and other peripheral equipment in situations when broadcasting procedures are modified, when there is need for emergency repair, or during scheduled maintenance.
The coaxial switch provides two isolated RF paths for each switch connections. For prevention of any damage a couple of auxiliary microswitches are built in, that help the RF power throughout the switch to be removed just before the RF spring contacts start to open and also to be established again just after the RF contacts reach their final position.
The aluminium cavity has four ports terminated with standard 7/8" EIA flanges including non-removable inner conductor connectors. The assembly is not gas-tight. The switch is equipped with a mechanical position indicator and emergency knob for manual operating.

Specifications

Impedance
Frequency range
50 ohms
from 0.3 up to 1000 MHz
Terminals
four 7/8" EIA flanges, plug
VSWR
less than 1.05
Maximum power rating:

MHz	2	30	100	200	500	1000
kW	14	8	4,5	3,5	2,3	1,7

Isolation
more than 60 dB
Switching time
1 second
Test voltage AC 50 Hz
$4,5 \mathrm{kV}$ peak
Overal dimensions $140 \times 140 \times 195$

* All dimensions shown are in milimeters.
* Drawings not to scale.

model	power source
SW 78.04	manual

The model SW 78.04 is two-way coaxial transfer switch designed for easy and reliable manual switching of transmitters, antennas, dummy loads and other peripheral equipment in situations when broadcasting procedures are modified, when there is need for emergency repair, or during scheduled maintenance. The coaxial switch provides two isolated RF paths for each switch connections. For prevention of any damage a couple of auxiliary microswitches are built in, that help the RF power throughout the switch to be removed just before the RF spring contacts start to open and also to be established again just after the RF contacts reach their final position.
The aluminium cavity has four ports terminated with standard 7/8" EIA flanges including non-removable inner conductor connectors. The assembly is not gas-tight. Besides handwheel for manual operating, the switch is equiped with a mechanical position indicator.

Specifications

Impedance			50 ohms			
Frequency range			from 0.3 up to 1000 MHz			
Terminals			four 7/8' EIA flanges, plug			
VSWR			less than 1.05			
Maximum power rating:						
MHz	2	30	100	200	500	1000
kW	14	8	4,5	3,5	2,3	1,7
Isolation			more than 60 dB			
Test voltage AC 50Hz			$4,5 \mathrm{kV}$ peak			
Overal dimensions			140x140x115			

* All dimensions shown are in milimeters.
* Drawings not to scale.

Legend:

S1 upper auxiliary micro switch S2 lower auxiliary micro switch S3 upper auxiliary micro switch S4 lower auxiliary micro switch

model	power source
SW 158.01	24 VDC
SW 158.02	$110 \mathrm{VAC}^{*}$
SW 158.03	230 VAC *

* electro motors are 24 VDC (transformers included)

The models SW 158.01, SW 158.02 and SW 158.03 are motor-driven, two-way coaxial transfer switches designed to change coaxial connections with a minimum off-airtime. Mainly they are used for switching transmitters, antennas, dummy loads and other peripheral equipment in situations when broadcasting procedures are modified, when there is need for emergency repair, or during scheduled maintenance.
The coaxial switch provides two isolated RF paths for each switch connections. For prevention of any damage a couple of auxiliary microswitches are built in, that help the RF power throughout the switch to be removed just before the RF spring contacts start to open and also to be established again just after the RF contacts reach their final position.
The aluminium cavity has four ports terminated with standard $15 / 8$ " EIA flanges including non-removable inner conductor connectors. The assembly is not gas-tight. The switch is equipped with a mechanical position indicator and emergency knob for manual operating.

Specifications

Impedance
Frequency range
50 ohms
from 0.3 up to 1000 MHz
Terminals
four $15 / 8$ " EIA flanges, plug
VSWR
less than 1.05
Maximum power rating:

MHz	2	30	100	200	500	1000
kW	85	24	13	9,5	5,5	4

Isolation
more than 60 dB
Switching time
1 second
Test voltage AC 50 Hz
8 kV peak
Overal dimensions $190 \times 190 \times 230$

[^3]* Drawings not to scale.

model	power source
SW 158.04	manual

The model SW 158.04 is two-way coaxial transfer switch designed for easy and reliable manual switching of transmitters, antennas, dummy loads and other peripheral equipment in situations when broadcasting procedures are modified, when there is need for emergency repair, or during scheduled maintenance.
The coaxial switch provides two isolated RF paths for each switch connections. For prevention of any damage a couple of auxiliary microswitches are built in, that help the RF power throughout the switch to be removed just before the RF spring contacts start to open and also to be
established again just after the RF contacts reach their final position.
The aluminium cavity has four ports terminated with standard $15 / 8^{\prime \prime}$ EIA flanges including non-removable inner conductor connectors. The assembly is not gas-tight. Besides handwheel for manual operating, the switch is equiped with a mechanical position indicator.

Specifications

Impedance
Frequency range
50 ohms

Terminals
from 0.3 up to 1000 MHz

VSWR
four $15 / 8$ " EIA flanges, plug
less than 1.05
Maximum power rating:

MHz	2	30	100	200	500	1000
kW	85	24	13	9,5	5,5	4

Isolation
more than 60 dB
Test voltage AC $50 \mathrm{~Hz} \quad 8 \mathrm{kV}$ peak
Overal dimensions $190 \times 190 \times 150$

* All dimensions shown are in milimeters.
* Drawings not to scale.

[^4]| model | power source |
| :---: | :---: |
| SW 318.01 | 24 VDC |
| SW 318.02 | $110 \mathrm{VAC}^{*}$ |
| SW 318.03 | $230 \mathrm{VAC}^{*}$ |

* electro motors are 24 VDC (transformers included)

The models SW 318.01, SW 318.02 and SW 318.03 are motor-driven two-way coaxial transfer switches designed to change coaxial connections with a minimum off-air-time. Mainly they are used for switching transmitters, antennas, dummy loads and other peripheral equipment in situations when broadcasting procedures are modified, when there is need for emergency repair, or during scheduled maintenance.
The coaxial switch provides two isolated RF paths for each switch connections. For prevention of any damage a couple of auxiliary microswitches are built in, that help the RF power throughout the switch to be removed just before the RF spring contacts start to open and also to be established again just after the RF contacts reach their final position.
The aluminum RF cavity has four ports terminated with $31 / 8^{\prime \prime}$ EIA flanges including non-removable inner conductor connectors. The assembly is not gas tight. The switch is equipped with a mechanical position indicator and emergency knob for manual operating.

Specifications

Impedance
Frequency range
50 ohms
from 0.3 up to 900 MHz
Terminals
four $31 / 8$ " EIA flanges, plug
VSWR
less than 1.05
Maximum power rating:

MHz	2	30	100	200	500	900
kW	140	75	42	30	20	14

Isolation
more than 60 dB
Switching time
2 seconds
Test voltage AC $50 \mathrm{~Hz} \quad 18 \mathrm{kV}$ peak
Overal dimensions $\quad 275 \times 275 \times 285$

* All dimensions shown are in milimeters.
* Drawings not to scale.

model	power source
SW 318.04	manual

The model SW 318.04 is two-way coaxial transfer switch designed for easy and reliable manual switching of transmitters, antennas, dummy loads and other peripheral equipment in situations when broadcasting procedures are modified, when there is need for emergency repair, or during scheduled maintenance.
The coaxial switch provides two isolated RF paths for each switch connections. For prevention of any damage a couple of auxiliary microswitches are built in, that help the RF power throughout the switch to be removed just before the RF spring contacts start to open and also to be established again just after the RF contacts reach their final position. The aluminum RF cavity has four ports terminated with $31 / 8$ " EIA flanges including non-removable inner conductor connectors. The assembly is not gas-tight Besides handwheel for manual operating, the switch is eqquiped with a mechanical position indicator.

Specifications

Impedance		50 ohms				
Frequency range		from 0.3 up to 900 MHz				
Terminals		four $31 / 8$ ' EIA flanges, plug				
VSWR		less than 1.05				
Maximum power rating:						
MHz	2	30	100	200	500	900
kW	140	75	42	30	20	14
Isolation			more than 60 dB			
Test voltage AC 50Hz			18 kV peak			
Overal dimensions			$275 \times 275 \times 285$			

* All dimensions shown are in milimeters.
* Drawings not to scale.

Legend:

S1 upper auxiliary micro switch S2 lower auxiliary micro switch S3 upper auxiliary micro switch S4 lower auxiliary micro switch

model	power source
SW 412.01	24 VDC
SW 412.02	$110 \mathrm{VAC}^{*}$
SW 412.03	$230 \mathrm{VAC}^{*}$

* electro motors are 24 VDC (transformers included)

The models SW 412.01, SW 412.02 and SW 412.03 are motor-driven two-way coaxial transfer switches designed to change coaxial connections with a minimum off-air-time.Mainly they are used for switching transmitters, antennas, dummy loads and other peripheral equipment in situations when broadcasting procedures are modified, when there is need for emergency repair, or during scheduled maintenance.
The coaxial switch provides two isolated RF paths for each switch connections. For prevention of any damage a couple of auxiliary microswitches are built in, that help the RF power throughout the switch to be removed just before the RF spring contacts start to open and also to be established again just after the RF contacts reach their final position.
The aluminum RF cavity has four ports terminated with 4 1/2" EIA flanges including non-removable inner conductor connectors. The assembly is not gas-tight. The switch is equipped with a mechanical position indicator and emergency knob for manual operating.

Specifications

Impedance
Frequency range
50 ohms
from 0.3 up to 800 MHz
Terminals
four 4 1/2" EIA flanges, plug
VSWR
less than 1.05
Maximum power rating:

MHz	2	30	100	200	500	800
kW	220	130	70	53	32	25

Isolation
more than 60 dB
Switching time
2 seconds
Test voltage AC 50 Hz 35 kV peak
Overal dimensions $290 \times 290 \times 310$

* All dimensions shown are in milimeters.
* Drawings not to scale.

model	power source
SW 412.04	manual

The model SW 412.04 is two-way coaxial transfer switch designed for easy and reliable manual switching of transmitters, antennas, dummy loads and other peripheral equipment in situations when broadcasting procedures are modified, when there is need for emergency repair, or during scheduled maintenance. The coaxial switch provides two isolated RF paths for each switch connections. For prevention of any damage a couple of auxiliary microswitches are built in, that help the RF power throughout the switch to be removed just before the RF spring contacts start to open and also to be established again just after the RF contacts reach their final position.
The aluminum RF cavity has four ports terminated with $41 / 2$ "EIA flanges including non-removable inner conductor connectors. The assembly is not gas-tight. Besides handwheel for manual operating, the switch is equipped with a mechanical position indicator.

Specifications

Impedance
Frequency range
Terminals
VSWR
Maximum power rating:

MHz	2	30	100	200	500	800
kW	220	130	70	53	32	25

Isolation
more than 60 dB
Test voltage AC $50 \mathrm{~Hz} \quad 35 \mathrm{kV}$ peak
Overal dimensions 290x290x255

50 ohms

from 0.3 up to 800 MHz
four 4 1/2' EIA flanges, plug
less than 1.05

Legend:

S1 upper auxiliary micro switch S2 lower auxiliary micro switch S3 upper auxiliary micro switch S4 lower auxiliary micro switch

* All dimensions shown are in milimeters.
* Drawings not to scale.

model	power source
SW 618.01	24 VDC
SW 618.02	$110 \mathrm{VAC}^{*}$
SW 618.03	$230 \mathrm{VAC}^{*}$

* electro motors are 24 VDC (transformers included)

The models SW 618.01, SW 618.02 and SW 618.03 are motor-driven two-way coaxial transfer switches designed to change coaxial connections with a minimum off-air-time.Mainly they are used for switching transmitters, antennas, dummy loads and other peripheral equipment in situations when broadcasting procedures are modified, when there is need for emergency repair, or during scheduled maintenance.
The coaxial switch provides two isolated RF paths for each switch connections. For prevention of any damage a couple of auxiliary microswitches are built in, that help the RF power throughout the switch to be removed just before the RF spring contacts start to open and also to be established again just after the RF contacts reach their final position.
The aluminum RF cavity has four ports terminated with $61 / 8$ " EIA flanges including non-removable inner conductor connectors. The assembly is not gas-tight. The switch is equipped with a mechanical position indicator and emergency knob for manual operating.

Specifications

Impedance
Frequency range
50 ohms
from 0.3 up to 700 MHz
Terminals four 6 1/8" EIA flanges, plug
VSWR
less than 1.05
Maximum power rating:

MHz	2	30	100	200	500	700
kW	600	240	110	90	50	40

Isolation
more than 60 dB
Switching time
2 seconds
Test voltage AC $50 \mathrm{~Hz} \quad 40 \mathrm{kV}$ peak
Overal dimensions $400 \times 400 \times 355$

* All dimensions shown are in milimeters.
* Drawings not to scale.

model	power source
SW 618.04	manual

The model SW 618.04 is two-way coaxial transfer switch designed for easy and reliable manual switching of transmitters, antennas, dummy loads and other peripheral equipment in situations when broadcasting procedures are modified, when there is need for emergency repair, or during scheduled maintenance. The coaxial switch provides two isolated RF paths for each switch connections. For prevention of any damage a couple of auxiliary microswitches are built in, that help the RF power throughout the switch to be removed just before the RF spring contacts start to open and also to be established again just after the RF contacts reach their final position.
The aluminum RF cavity has four ports terminated with $61 / 8$ "EIA flanges including non-removable inner conductor connectors. The assembly is not gas-tight. Besides handwheel for manual operating, the switch is equipped with a mechanical position indicator.

Specifications

Impedanc			50 ohms			
Frequency range			from 0.3 up to 700 MHz			
Terminals			four $61 / 8^{\prime}$ EIA flanges, plug			
VSWR			less than 1.05			
Maximum power rating:						
MHz	2	30	100	200	500	700
kW	600	240	110	90	50	40
Isolation			more than 60 dB			
Test voltage AC 50 Hz			40 kV peak			
Overal dimensions			$400 \times 400 \times 310$			

* All dimensions shown are in milimeters.
* Drawings not to scale.

Legend:

S1 upper auxiliary micro switch S2 lower auxiliary micro switch S3 upper auxiliary micro switch S4 lower auxiliary micro switch

model	power source
SWU 318.01	24 VDC
SWU 318.03	$110 \mathrm{VAC}^{*}$
SWU 318.05	$230 \mathrm{VAC}^{*}$
SWU 318.07	manual

* electro motors are 24 VDC (transformers included)

The models SWU 318.01, SWU 318.03 and SWU 318.05 are motor driven, SWU 318.07 is manual U-Link type, two-way coaxial switches $31 / 8$ " EIA. They are used for switching transmitters, antennas, dummy loads and other peripheral equipment in situations when broadcasting procedures are modified, when there is need for emergency repair, or during scheduled maintenance. A couple of auxilary microswitches are built in, provide RF power throughout the switch to be removed just before the RF spring contacts start to open and also to be established again just after the RF contacts reach their final position.
They are designed for easy and reliable switching of coaxial transmission lines and systems, and are suitable for multiplying in matrices.

Specifications

Impedance
50 ohms
Frequency range
from 0 up to 1000 MHz
Terminals
four $31 / 8$ " EIA flanges, plug
VSWR
less than 1.05
Maximum power rating:

MHz	2	30	100	500	1000
kW	240	85	42	18	15

Isolation
Switching time
Test voltage AC 50 Hz
Overal dimensions
more than 100 dB
3 seconds
20 kV peak
330x330x510

* All dimensions shown are in milimeters.
* Drawings not to scale.

model	power source
SWU 412.01	24 VDC
SWU 412.03	$110 \mathrm{VAC}^{*}$
SWU 412.05	$230 \mathrm{VAC}^{*}$
SWU 412.07	manual

* electro motors are 24 VDC (transformers included)

The models SWU 412.01, SWU 412.03 and SWU 412.05 are motor driven, SWU 412.07 is manual U-Link type, two-way coaxial switches 4 1/2"EIA. They are used for switching transmitters, antennas, dummy loads and other peripheral equipment in situations when broadcasting procedures are modified, when there is need for emergency repair, or during scheduled maintenance. A couple of auxilary microswitches are built in, provide RF power throughout the switch to be removed just before the RF spring contacts start to open and also to be established again just after the RF contacts reach their final position.
They are designed for easy and reliable switching of coaxial transmission lines and systems, and are suitable for multiplying in matrices.

Specifications

Impedance
Frequency range
50 ohms
from 0 up to 900 MHz
Terminals
four 4 1/2" EIA flanges, plug
VSWR
less than 1.05
Maximum power rating:

MHz	2	30	100	500	900
kW	430	150	70	32	23

Isolation
more than 100 dB
Switching time
3 seconds
Test voltage AC $50 \mathrm{~Hz} \quad 30 \mathrm{kV}$ peak
Overal dimensions $430 \times 430 \times 550$

* All dimensions shown are in milimeters.
* Drawings not to scale.

model	power source
SWU 4116.01	24 VDC
SWU 4116.03	$110 \mathrm{VAC}^{*}$
SWU 4116.05	$230 \mathrm{VAC}^{*}$
SWU 4116.07	manual

* electro motors are 24 VDC (transformers included)

The models SWU 4116.01, SWU 4116.03 and SWU 4116.05 are motor driven, SWU 4116.07 is manual U-Link type, two-way coaxial switches 4 1/16" EIA. They are used for switching transmitters, antennas, dummy loads and other peripheral equipment in situations when broadcasting procedures are modified, when there is need for emergency repair, or during scheduled maintenance. A couple of auxilary microswitches are built in, provide RF power throughout the switch to be removed just before the RF spring contacts start to open and also to be established again just after the RF contacts reach their final position.
They are designed for easy and reliable switching of coaxial transmission lines and systems, and are suitable for multiplying in matrices.

Specifications

Impedance
Frequency range
50 ohms
from 0 up to 900 MHz
Terminals
four 4 1/16" EIA flanges, plug
VSWR
less than 1.05
Maximum power rating:

MHz	2	30	100	500	900
kW	430	150	70	32	23

Isolation
more than 100 dB
Switching time
3 seconds
Test voltage AC $50 \mathrm{~Hz} \quad 30 \mathrm{kV}$ peak
Overal dimensions $430 \times 430 \times 550$

* All dimensions shown are in milimeters.
* Drawings not to scale.

model	power source
SWU 618.01	24 VDC
SWU 618.03	$110 \mathrm{VAC}^{*}$
SWU 618.05	$230 \mathrm{VAC}^{*}$
SWU 618.07	manual

* electro motors are 24 VDC (transformers included)

The models SWU 618.01, SWU 618.03 and SWU 618.05 are motor driven, SWU 618.07 is manual U-Link type, two-way coaxial switches $61 / 8$ " EIA. They are used for switching transmitters, antennas, dummy loads and other peripheral equipment in situations when broadcasting procedures are modified, when there is need for emergency repair, or during scheduled maintenance. A couple of auxilary microswitches are built in provide RF power throughout the switch to be removed just before the RF spring contacts start to open and also to be established again just after the RF contacts reach their final position.
They are designed for easy and reliable switching of coaxial transmission lines and systems, and are suitable for multiplying in matrices.

Specifications

Impedance
Frequency range
50 ohms
from 0 up to 700 MHz
Terminals
four $61 / 8^{\prime \prime}$ EIA flanges, plug
VSWR
less than 1.05
Maximum power rating:

MHz	2	30	100	500	700
kW	800	250	120	55	42

Isolation
more than 100 dB
Switching time
3,5 seconds
Test voltage AC $50 \mathrm{~Hz} \quad 40 \mathrm{kV}$ peak
Overal dimensions $500 \times 500 \times 610$

* All dimensions shown are in milimeters.
* Drawings not to scale.

Coaxial Matrix Switching Systems

Coaxial matrix switching system allow connecting any of a number of transmitters to any of a number of antenas. RF Matrix system are idealy suited for applications with high frequency. The design provides a compact system with excellent power rating, low insertion VSWR, low insertion loss, and high isolation characteristics, provides good flexibility and control.
Advantages of these system are that they allow adding of column or row switches. These matrices do not allow connection of two or more transmitters at the same time, or connection of two or more transmitters with one antenna at the same time.
Maintenance of these matrices is very easy because of direct access to any of switches.

©®

* All dimensions shown are in milimeters.
* Drawings not to scale.

model	control panel input / output power
CP 0001	$* 230 \mathrm{VAC} / 230 \mathrm{VAC}$
CP 0005	$* 230 \mathrm{VAC} / 24 \mathrm{VDC}$

* upon request units with voltage of 110 VAC can be supplied instead of 230 VAC

The 19 " rack control panel is designed for remote control of the motorized RF power transfer switch. The operating is easily possible using the two-way "operating switch". Each position of the "operating switch" 1 or 2 that is equipped with indication light, activates the electro motor of the RF power transfer switch that shiftes the connection between the transmitters and antennas.
Near the "operating switch" there are four lights with square arrangement, connected to each other with printed lines and arrows, that show the appropriate transmittersantennas path-connection. For each position of the "operating switch", under voltage are only two opposite lights that indicate the active RF path-connection of the RF power transfer switch. After activating the "operating switch" and establishing the other RF power connection in the RF switch, the other two lights, that indicate another transmitters-antennas connection, become active.

* All dimensions shown are in milimeters.
* Drawings not to scale.

19" Rack Control Panel for Motorized RF Power Switch

* All dimensions shown are in milimeters.
* Drawings not to scale.

model	input terminal
AN U NF.01	N (female)
AN U 716.03	$7 / 16^{\prime \prime}$ DIN (female)
AN U 78.05	$7 / 8^{\prime \prime}$ EIA

Specifications

Impedance	50 ohms
Frequency range	from 470 up to 860 MHz
Gain	10 dB (refer to half-wave dipole)
VSWR	less than 1.15 over the whole band
Polarization	horizontal
3 dB beamwidth	H-plane 70°
	V-plane 24^{0}
Front to back ratio	25 dB
Power rating per panel	0,5 kW max (N female termination)
	$1 \mathrm{~kW} \max$ (7/16" DIN termination)
	$2 \mathrm{~kW} \max$ (7/8" EIA termination)
Material used	reflector - stainless steel dipoles - brass radome - red or white polyester
Dimensions	1000x460x215
Antenna weight	16 kg . without mounting brackets
Wind surface	$0.45 \mathrm{~m}^{2}$
Antenna mounting	directly on the tower construction or with galvanized mounting brackets supplied with the antenna, designed for pole
Packing	diameters from 60 up to 140 mm . in cartoon box
Shipping dimensions	L x W x H (cm) - $102 \times 47 \times 34 \mathrm{~cm}$.

four panel antennas in one bay quadrant arrangement
mounting brackets

* All dimensions shown are in milimeters.
* Drawings not to scale.

Typical horizontal patterns
(work test at 35 channel (586 MHz) at a distance of 250 mm from a mounting pole axis)

UHF panel antennas with eight elements can produce a wide variety of standard and custom azimuth patterns. For assistance in pattern selection or designing customized patterns we are completely at your disposal.

leveling of the panel antennas in quadrant arrangement

NOTE: each antenna is supplied with two mounting brackets

* All dimensions shown are in milimeters.
* Drawings not to scale.

model	input terminal
AN FD NF.01	N (female)
AN FD 716.03	$7 / 16^{\prime \prime}$ DIN (female)
AN FD 78.05	7/8" EIA

Specifications

Impedance	50 ohms
Frequency range	from 87.5 up to 108 MHz
Gain	2 dB (refer to half-wave dipole)
VSWR	less than 1.3 over the whole band
Polarization	vertical
Front to back ratio	7.5 dB
Power rating	500 wats max (N type termination)
	$1.0 \mathrm{~kW} \max$ (7/16" DIN female termination)
	2.0 kW max (7/8" EIA termination)
Material used	outer - stainless steel tube inner - brass insulation - virgin PTFE
Dimensions	1374x814x57
Antenna weight	6.5 kg . without mounting brackets
Wind surface-no icing	$0.15 \mathrm{~m}^{2}$
Antenna mounting	by using galvanized mounting bracket
	supplied with the antenna, designed for
	mounting pole diameters from 48 up to 108 mm .

mounting bracket

horizontal

 radiation pattern

* All dimensions shown are in milimeters.
* Drawings not to scale.

model	input terminal
AN FY NF.11	N (female)
AN FY 716.13	$7 / 16^{\prime \prime}$ DIN (female)
AN FY 78.15	$7 / 8^{\prime \prime}$ EIA

Specifications

Impedance	50 ohms
Frequency range	from 87.5 up to 108 MHz
Gain	4 dB (refer to half-wave dipole)
VSWR	less than 1.25 over the whole band
Polarization	horizontal or vertical
3 dB beamwidth	H-plane 135°
	V-plane $70{ }^{\circ}$
Front to back ratio	12 dB
Power rating	500 wats max (N type termination)
	1.0 kW max ($7 / 16$ " DIN female termination)
	$2.0 \mathrm{~kW} \max$ (7/8" EIA termination)
Material used	outer - stainless steel inner - brass insulation - virgin PTFE
Dimensions	1860x1446x57
Antenna weight	14 kg . without mounting brackets
Wind surface-no icing	$0.25 \mathrm{~m}^{2}$
Antenna mounting	by using mounting bracket supplied with the antenna, designed for mounting pole diameters from 50 up to 115 mm .

mounting bracket from 50 up to 115 mm .

horizontal polarization radiation pattern

vertical polarization radiation pattern

[^5]| model | frequency range (Mhz) |
| :---: | :---: |
| AN FC 78.21 | $87,5 \div 99$ |
| AN FC 78.25 | $97 \div 108$ |

Specifications

Impedance	50 ohms
Input terminals	$7 / 8 "$ EIA socket
Gain	-2 dB (refer to half-wave dipole)
VSWR	less than 1.3 over the whole band Polarization
circular	
Power rating	2 kW max
Material used	outer - stainless steel inner - brass insulation - virgin PTFE

Antenna weight
(model AN FC 78.21) $\quad 16 \mathrm{~kg}$.
(model AN FC 78.25) 15 kg .
Overall dimensions

$$
\begin{array}{ll}
(\text { model AN FC 78.21) } & 1503 \times 1156(\Phi) \\
(\text { model AN FC 78.25) } & 1370 \times 1062(\Phi)
\end{array}
$$

Wind surface
Antenna mounting $0.24 \mathrm{~m}^{2}$ by using mounting bracket supplied with the antenna, designed for mounting pole diameters from 50 up to 115 mm .

mounting bracket

* All dimensions shown are in milimeters.
* Drawings not to scale.

Model AN FP 78.05

Specifications
Impedance
Frequency range
Input terminals
Gain
VSWR
Polarization
Power rating
Material used

Antenna weight

© \square

* All dimensions shown are in milimeters.
* Drawings not to scale.

model	input terminal
AN VP 716.03	$7 / 16^{\prime \prime}$ DIN (female)
AN VP 78.05	$7 / 8 "$ EIA

Specifications

Impedance	50 ohms
Frequency range	from 174 up to 230 MHz
Gain	8 dB (refer to half-wave dipole)
VSWR	less than 1.2 over the whole band
Polarization	horizontal or vertical
Front to back ratio	25 dB
Power rating	2 kW max
Material used	radiating element - aluminum inner conductors - brass insolation - virgin PTFE reflector - aluminum dipoles radomes - red polyester
Reflector dimensions	1320 x 1320 Antenna weight
18 kg.	

* All dimensions shown are in milimeters.
* Drawings not to scale.

FM Power Splitters (87.5-108 MHz)
VHF Power Splitters (174 - 230 MHz)
UHF Power Splitters (470 - 860 MHz)

Specifications:

Type of splitting: balanced,
Impedance: $\quad 50 \mathrm{Ohms}$,

VSWR less than 1.1,
Number of outputs: 2,3 or 4 ,
Material used: brass and PTFE ,
Finish:
dyed with dark gray synthetic
paint after electrolytic bath.

pair of clamps (supplied upon request)

* Drawings not to scale.

FM Power Splitters (87.5-108 MHz) :

Conectors		Ordering Number	Average Power	Dimensions (mm.)				
input	outputs			A	B	C	D	E
7/16 DIN (f)	$2 \times 7 / 16$ DIN (f)	SPF 716.716.02	4 kW	793	810	1603	$\square 40$	150
7/16 DIN (f)	$3 \times 7 / 16$ DIN (f)	SPF 716.716.03	4 kW	793	810	1603	$\square 40$	150
7/16 DIN (f)	$4 \times 7 / 16$ DIN (f)	SPF 716.716.04	4 kW	793	810	1603	$\square 40$	150
7/8EIA (f)	$2 \times 7 / 16$ DIN (f)	SPF 78.716.02	5 kW	806	810	1616	$\square 40$	150
7/8EIA (f)	$3 \times 7 / 16$ DIN (f)	SPF 78.716.03	5 kW	806	810	1616	$\square 40$	150
7/8EIA (f)	$4 \times 7 / 16$ DIN (f)	SPF 78.716.04	5 kW	806	810	1616	$\square 40$	150
7/8EIA (f)	$2 \times 7 / 8 \mathrm{EIA}$ (f)	SPF 78.78.02	5 kW	806	810	1616	$\square 40$	133
7/8EIA (f)	$3 \times 7 / 8 \mathrm{EIA}$ (f)	SPF 78.78.03	5 kW	806	810	1616	$\square 40$	133
7/8EIA (f)	$4 \times 7 / 8 \mathrm{EIA}$ (f)	SPF 78.78.04	5 kW	806	810	1616	$\square 40$	133
15/8EIA (f)	$2 \times 7 / 8 \mathrm{EIA}$ (f)	SPF 158.78.02	10 kW	793	800	1593	$\square 80$	168
$15 / 8 \mathrm{EIA}$ (f)	$3 \times 7 / 8 \mathrm{EIA}$ (f)	SPF 158.78.03	10 kW	793	800	1593	$\square 80$	168
$15 / 8 \mathrm{EIA}$ (f)	$4 \times 7 / 8 \mathrm{EIA}$ (f)	SPF 158.78.04	10 kW	793	800	1593	$\square 80$	168

* All dimensions shown are in milimeters.
* Drawings not to scale.

VHF Power Splitters ($174-230 \mathrm{MHz}$) :

Conectors		Ordering Number	Average Power	Dimensions (mm.)				
input	outputs			A	B	C	D	E
7/16 DIN (f)	$2 \times 7 / 16$ DIN (f)	SPV 716.716.02	3 kW	400	490	890	$\square 40$	150
7/16 DIN (f)	$3 \times 7 / 16$ DIN (f)	SPV 716.716.03	3 kW	400	490	890	$\square 40$	150
7/16 DIN (f)	$4 \times 7 / 16$ DIN (f)	SPV 716.716.04	3 kW	400	490	890	$\square 40$	150
7/8EIA (f)	$2 \times 7 / 16$ DIN (f)	SPV 78.716.02	4 kW	413	490	903	$\square 40$	150
7/8EIA (f)	$3 \times 7 / 16$ DIN (f)	SPV 78.716.03	4 kW	413	490	903	$\square 40$	150
7/8EIA (f)	$4 \times 7 / 16$ DIN (f)	SPV 78.716.04	4 kW	413	490	903	$\square 40$	150
7/8EIA (f)	$2 \times 7 / 8 \mathrm{EIA}$ (f)	SPV 78.78.02	4 kW	413	490	903	$\square 40$	133
7/8EIA (f)	$3 \times 7 / 8 \mathrm{EIA}$ (f)	SPV 78.78.03	4 kW	413	490	903	$\square 40$	133
7/8EIA (f)	$4 \times 7 / 8 \mathrm{EIA}$ (f)	SPV 78.78.04	4 kW	413	490	903	$\square 40$	133
$15 / 8 \mathrm{EIA}$ (f)	$2 \times 7 / 8 \mathrm{EIA}$ (f)	SPV 158.78.02	8 kW	397	490	887	$\square 80$	168
$15 / 8 \mathrm{EIA}$ (f)	$3 \times 7 / 8 \mathrm{EIA}$ (f)	SPV 158.78.03	8 kW	397	490	887	$\square 80$	168
$15 / 8 \mathrm{EIA}$ (f)	$4 \times 7 / 8 \mathrm{EIA}(\mathrm{f})$	SPV 158.78.04	8 kW	397	490	887	$\square 80$	168

UHF Power Splitters ($470-860 \mathrm{MHz}$) :

\left.| Conectors | | Ordering | Average | Dimensions (mm.) | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Number | | | | | | | |$\right)$

[^6]* Drawings not to scale.

model	connector terminal	max power (input)
FI FM NF.11	N (female)	500 W
FI FM 716.13	$7 / 16^{\prime \prime}$ DIN (female)	$1,0 \mathrm{KW}$
FI FM 78.15	$7 / 8^{\prime \prime}$ EIA	$2,5 \mathrm{KW}$

Specifications

Frequency	$87.5-108 \mathrm{MHz}$ (tunable),
Impedance	50 Ohms,
Bandwidth	300 KHz
Temperature range	$-10^{\circ}-+50^{\circ} \mathrm{C}$
Material used	aluminum cavity and silver plated brass tuning rods, dyed with dark gray synthetic paint, Finish
Weight	18 kg.

Ask for information/quotation for multiplexer $(2 x),(3 x),(4 x)$.

* All dimensions shown are in milimeters.
* Drawings not to scale.

model	connector terminal	max power (input)
FI FM 158.11	$15 / 8^{\prime \prime}$ EIA	5 KW
FI FM 158.21	$15 / 8^{\prime \prime}$ EIA	10 KW

Specifications

Frequency	$87.5-108 \mathrm{MHz}$ (tunable),
Bandwidth (-3dB)	800 KHz,
Impedance	50 Ohms,
Connector terminals	$15 / 8^{\prime \prime}$ EIA swivel flange-female (input and output),
VSWR	less than 1.05,
Typical insertion loss	0.5 dB,
Cooling	air fan $80 \mathrm{~W} ; 230 \mathrm{VAC} / 50 \mathrm{~Hz}$
Temperature range	$-10^{\circ}-+50^{\circ} \mathrm{C}$
Material used	aluminum cavity and silver plated brass tuning rods, Finish
Weight	80 kg.

Ask for information/quotation for multiplexer $(2 x),(3 x),(4 x)$.

* All dimensions shown are in milimeters.
* Drawings not to scale.

Model FI U 716.51

Specifications

Frequency	$470-860 \mathrm{MHz}$ (tunable),
Impedance	50 Ohms,
Connector terminals	$7 / 16 \mathrm{DIN}-$ female (input and output),
Power (input)	$0.8 \mathrm{~kW} . \mathrm{Max}$,
Bandwidth	8 MHz,
Temperature range	$-5^{\circ}-+50^{\circ} \mathrm{C}$
Material used	brass cavity and silver plated brass tuning rods, dyed with dark gray synthetic paint after electrolytic bath,
Finish	6.5 kg.

Ask for information/quotation for multiplexer $(2 x),(3 x),(4 x)$.

* All dimensions shown are in milimeters.
* Drawings not to scale.

Adapters

Material :

- Resilient contacts are made of thermally treated CuBe and are silver or gold plated.
- Insulation are made of pure PTFE
- Center and outer conductor parts are made of copper alloy, silver-plated
- Outer metal parts are made of copper alloy, nickel-plated
- Gaskets are made of silicone rubber
- Hardware set are made of stainless steel

Impedance : 50Ω

Straight Adapters

Adapter interfaces	N		7/16 DIN		$\begin{aligned} & \hline 7 / 8^{\prime \prime} \\ & \text { EIA } \end{aligned}$	$\begin{gathered} 15 / 8^{\prime \prime} \\ E I A \end{gathered}$	$\begin{gathered} \hline 31 / 8^{\prime \prime} \\ E I A \\ \hline \end{gathered}$	$\begin{gathered} \hline 1 / 16 " \\ \text { EIA } \end{gathered}$	$\begin{gathered} 41 / 2 \\ E I A \\ \hline \end{gathered}$
	male	female	male	female					
7/8" EIA	AD 78.NM	AD 78.NF	AD 78.716M	AD 78.716F					
$15 / 8^{\prime \prime}$ EIA	AD 158.NM	AD 158.NF	AD 158.716M	AD 158.716F	AD 158.78				
3 1/8" EIA	AD 318.NM	AD 318.NF			AD 318.78	AD 318.158			
4 1/16" EIA	AD 416.NM	AD 416.NF				AD 416.158	AD 416.318		
4 1/2" EIA	AD 412.NM	AD 412.NF				AD 412.158	AD 412.318	AD 412.416	
6 1/8" EIA	AD 618.NM	AD 618.NF					AD 618.318	AD 618.416	AD 618.412

Multipoint adapters

Adapter interfaces		Ordering number
Input	Output	
7/8" EIA	$2 \times N(F)$	MPAD 78.N. 2
7/8" EIA	$3 \times N(F)$	MPAD 78.N. 3
7/8" EIA	$4 \times N(F)$	MPAD 78.N. 4
7/8" EIA	$2 \times 7 / 16$ DIN (F)	MPAD 78.716.2
7/8" EIA	$3 \times 7 / 16$ DIN (F)	MPAD 78.716.3
7/8" EIA	$4 \times 7 / 16$ DIN (F)	MPAD 78.716.4
1 5/8 EIA	$2 \times 7 / 8$ EIA	MPAD 158.78.2
1 5/8 EIA	$3 \times 7 / 8$ EIA	MPAD 158.78.3
1 5/8 EIA	$4 \times 7 / 8$ EIA	MPAD 158.78.4

[^7]* Drawings not to scale.

General information : All connectors for foam dielectric cables feature a self-flaring design .Careful tolerance control during manufacture minimizes imperfections and provides low VSWR performance.These connectors can be easily and quickly attached with ordinary hand tools.
Connectors for air dielectric cables are characterized by very low loses. These connectors have excellent electrical values and provide outstanding performance for the most demanding applications.

Material :

- Resilient contacts are made of thermally treated CuBe and are silver or gold plated.
- Insulation are made of pure PTFE
- Center and outer conductor parts are made of copper alloy, silver-plated
- Outer metal parts are made of copper alloy, nickel-plated
- Gaskets are made of silicone rubber and are used to prevent moisture and water penetration
- Hardware set are made of stainless steel

Impedance : 50Ω
VSWR: less than 1.03
Frequency range : 0-1000 Mhz

* All dimensions shown are in milimeters.
* Drawings not to scale.

Connectors

Connectors

Coaxial cables Connector interfaces		1/2 " RFS		1/2 " Andrew	
		$\begin{gathered} \hline \text { Cellflex(Foam) } \\ \text { LCF12-50 } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Heliflex(Air) } \\ \text { HCA12-50 } \\ \hline \end{gathered}$	LDF4-50A(Foam)	HJ4-50(Air)
N	male	CO R NM. 12.01	CO R NM. 12.11	CO A NM. 12.21	CO A NM.12.31
	female	CO R NF. 12.03	CO R NF.12.13	CO A NF. 12.23	CO A NF. 12.33
$\begin{gathered} \hline 7 / 16^{\prime \prime} \\ \text { DIN } \\ \hline \end{gathered}$	male	CO RM 716.12.04	CO RM 716.12.14	CO AM 716.12.24	CO AM 716.12.34
	female	CO RF 716.12.06	CO RF 716.12.16	CO AF 716.12.26	CO AF 716.12.36
7/8" EIA		CO R 78.12.08	CO R 78.12.18	CO A 78.12.28	CO A 78.12.38
Coaxial cables		$7 / 8$ " RFS		7/8 " Andrew	
Connector interfaces		$\begin{gathered} \hline \text { Cellflex(Foam) } \\ \text { LCF78-50A } \\ \hline \end{gathered}$	$\begin{gathered} \text { Heliflex(Air) } \\ \text { HCA78-50 } \end{gathered}$	LDF5-50A(Foam)	HJ5-50(Air)
N	male	CO R NM.78.01	CO R NM.78.11	CO A NM.78.21	CO A NM.78.31
	female	CO R NF.78.03	CO R NF.78.13	CO A NF.78.23	CO A NF.78.33
$\begin{gathered} \hline 7 / 16 " \\ \text { DIN } \\ \hline \end{gathered}$	male	CO RM 716.78.04	CO RM 716.78.14	CO AM 716.78.24	CO AM 716.78.34
	female	CO RF 716.78.06	CO RF 716.78.16	CO AF 716.78.26	CO AF 716.78.36
7/8" EIA		CO R 78.78.08	CO R 78.78.18	CO A 78.78.28	CO A 78.78.38
$15 / 8^{\prime \prime}$ EIA		CO R 158.78.09	CO R 158.78.19	CO A 158.78.29	CO A 158.78.39
Coaxial cables		1 5/8 " RFS		1 5/8 " Andrew	
Connector interfaces		$\begin{gathered} \text { Cellflex(Foam) } \\ \text { LCF158-50A } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Heliflex(Air) } \\ & \text { HCA158-50 } \end{aligned}$	LDF7-50A(Foam)	HJ7-50(Air)
7/8" EIA		CO R 78.158.01	CO R 78.158.11	CO A 78.158.28	CO A 78.158.38
$15 / 8^{\prime \prime}$ EIA		CO R 158.158.03	CO R 158.158.13	CO A 158.158.21	CO A 158.158.31
3 1/8" EIA		CO R 318.158.04	CO R 318.158.14	CO A 318.158.24	CO A 318.158.34
Coaxial cables		$31 / 8$ " RFS	3 " Andrew	$41 / 8$ " RFS	4 " Andrew
Connector interfaces		Heliflex(Air) HCA318-50	HJ8-50B(Air)	Heliflex(Air) HCA418-50	HJ11-50(Air)
3 1/8" EIA		CO R 318.318.01	CO A 318.3.21	CO R 318.418.11	CO A 318.4.31
4 1/8" EIA		CO R 418.318.03	CO A 418.3.23	CO R 418.418.13	CO A 418.4.33
Coaxial cables		RG 213		RG 217	
Connector					
$\begin{gathered} \hline 7 / 16 " \\ \text { DIN } \\ \hline \end{gathered}$	male	CO RGM 716.213		CO RGM 716.217	
	female	CO RGF 716.213		CO RGF 716.217	
7/8" EIA		CO RG 78.213		CO RG 78.217	

CUSTOM DESIGNING AND MANUFACTURING OF ANY RF CONNECTOR FOR ANY CABLE SIZE IS AVAILABLE BY REQUEST

[^8]

line size	copper rigid line											
	outer conductor				inner conductor				cut back dimensions			
	A		B		C		D		E	F	G	H
	dia.	tol.	dia.	tol.	dia.	tol.	dia.	tol.				
7/8	22.22	$\square 0.06$	19.94	$\square 0.06$	8.66	$\square 0.05$	7.39	$\square 0.05$	12.7	8.7	4	8.7
15/8	41.27	$\square 0.07$	38.78	$\square 0.07$	16.87	$\square 0.06$	14.93	$\square 0.06$	15.8	11.1	4.7	11.1
3 1/8	79.4	$\square 0.12$	76.88	$\square 0.12$	33.4	$\square 0.07$	31.26	$\square 0.07$	23.4	17	6.4	17
$41 / 2$	106	$\square 0.15$	103	$\square 0.15$	44.7	$\square 0.1$	42.8	$\square 0.08$	23.4	18	5.4	18
$61 / 8$	155.6	$\square 0.2$	151.9	$\square 0.2$	66	$\square 0.1$	64	$\square 0.1$	32.5	25.4	7.1	25.4

$\oplus \square$

* All dimensions shown are in milimeters.
* Drawings not to scale.

Engineering

IEC standard 169-16

© Θ

* All dimensions shown are in milimeters.
* Drawings not to scale.

N female - 50 ohms
IEC standard 169-16

Engineering

* All dimensions shown are in milimeters.
* Drawings not to scale.

Notes

\qquad \square

TRINEKS

Vladimir Komarov 40/2-5, 1000 Skopje, Republic of Macedonia ++389 (0)2 2470247
info@trineksgroup.com
www.trineksgroup.com

[^0]: * All dimensions shown are in milimeters.
 * Drawings not to scale.

[^1]: * All dimensions shown are in milimeters.
 * Drawings not to scale.

[^2]: Legend:
 S1 upper auxiliary micro switch S2 lower auxiliary micro switch S3 upper auxiliary micro switch S4 lower auxiliary micro switch

[^3]: * All dimensions shown are in milimeters.

[^4]: Legend:
 S1 upper auxiliary micro switch S2 lower auxiliary micro switch S3 upper auxiliary micro switch S4 lower auxiliary micro switch

[^5]: * All dimensions shown are in milimeters.
 * Drawings not to scale.

[^6]: * All dimensions shown are in milimeters.

[^7]: * All dimensions shown are in milimeters.

[^8]: * All dimensions shown are in milimeters.
 * Drawings not to scale.

